EXAMINING PIPE RAMMING DESIGN-
A FORENSIC ANALYSIS OF A HIGH RISK PROJECT

Kimberlie Staheli, Ph.D., P.E.
Staheli Trenchless Consultants
Seattle, WA, USA

Presented for the UKSTT Trenchless Roadshow, October 2017

Presentation Outline

- Pipe Ramming – State of the Art
- Two Pipe Ramming Projects
 - Background
 - Set-up of the Rams
 - Problems experienced during construction
 - Cause of the problems
 - Lessons
 - Contribution to Design

Pipe Ramming

- Open Ended Steel Casing
- Propelled by Ramming
- Pneumatic Hammer (or Hydraulic)
- Displaces Soil
- No Excavation
- No steering control

Types of Hammers

- Hydraulic Hammer
- Pneumatic Hammer

Force and Frequency

Applications

- Crossings
 - Road
 - Railroad
 - Creek Crossings
- Casings for
 - Water
 - Sewer
 - Gas
 - Cables
- HDD
 - Conductor Casings
 - HDD Assist

Pipe Ramming with HDD

- Conductor barrel
 - Steel casing to bridge poor soils
 - HDD drilled through conductor casing
Pipe Ramming

Conductor Casing for a 36” HDD

Pipe Ramming with HDD

• HDD Assist
 – Drill rig needs additional force to complete installation
 – Product Pipe Stuck
• Retrieve Product Pipe

Types of Hammers

Hydraulic Hammer
Pneumatic Hammer

WSDOT Project

• Two Large Pipe Ramming Projects
 – 3.65 meter (144”)
 – 3.05 meter (120”)
• Road Crossings
 – 82 meters (270 feet)
• Culvert Replacements
 – Fish Bearing Streams
• Depth determined by Creek Elevation
Geotechnical

- 7 Geotechnical borings for each crossing
- Fill overlying native glacial soils (glacial till)
- Alignment below Groundwater:
 - Fill: Seepage stabilizes at: 1-2 gal/min [2.8 ft/day]
 - Glacial deposits: low-permeability dense silt, sand, gravel: Pockets 1-2 gal/min [2.8 ft/day]- bleed off

3.65 m (144-inch) Crossing: Ram Shaft
- Hammer Cradle
- Driven H-pile Supports

3.65 m (144-inch) Crossing: Bulkhead
- Foamed Perimeter

3.65 m (144-inch) Crossing: Launch Seal
- Launch Seal
- 31mm (1.125") Steel Casing
- 12.5 mm (0.5") Cutting Shoe Plates

3.65 m (144-inch) Crossing: Hammer Adapter
- Hammer Adapter

144-inch Crossing: Initial Soils
- Cut Through Wood
- Cutting Shoe
Advance Rate Slows...then Refusal!

- Progressed 40m (130 ft) past launch seal
- Stop to remove soils from casing
- Lots of wood/logs/stumps
- Wood concentrated in upper 2/3 of pipe
- Invert deformed upward at 20 m (65 feet)
 - Invert progressively deformed for 21 m (70 feet)
 - Total Deformation of 9 meters

144-inch Crossing: Wood As Expected

Engulfed Wood Logs/Stumps

Invert deformation

Failure Progressed 21 m (70’ feet)

Start of Invert Deformation

Severe Deformation

Casing Crown

Cutting Shoe

Casing Invert

Switch to the 3.05 m (120-inch) Crossing

- Ram 2nd Crossing while investigation continues
- Same setup and geotechnical conditions
- ~610m (2,000 ft) down the road
- Smaller OD, same casing wall and shoe

3.06m (120-inch) Crossing: Launch Seal

Beveled Casing Leading Edge

0.5” Cutting Shoe

Launch Seal
Celebrating 20 years of Trenchless Excellence

Sandbag Bulkhead for Groundwater

Sandbags Counterbalance Soil Inflow

Sandbag Bulkhead

Soil Plug Displaces Sandbags

Stop to Check

• Peer
• Excav...
• BUT...

Stop to Check

Wood Stump

Hello Invert... My name is Crown

Casing Crown

Casing Invert

Forensic Investigation of Cause

• Wood? (splinter?, log?, stump?)
• Cobble?
• Boulder?
• All of the above?
• Something else?

3.65m (144-inch) Crossing: Investigation

Cut Out Invert

Initial Point of Failure
3.65m (144-inch) Crossing: Investigation

- Dense Silty Sand (No Cobbles/Boulders/Wood)

Geotechnical Information

- 4’ (1.2m) Groundwater head – Dense soils w/ silt
- Crown (~75%) of casing through Roadway Fill
 - Fill Unit 1a: medium dense to very dense sand/gravel
 - Fill Unit 1b: loose to medium dense silty sand/gravel with larger wood debris, stumps or logs
- Invert (~25%) of casing through native glacial soils
 - Unit 2 Glacial Deposits: Medium dense to very dense sand with silt and gravel. Likely cobbles and boulders.

Initial Point of Deformation

120-inch Diameter Crossing

Identical Deformation for Both Casings
Comparison of Crossings blows/ft

<table>
<thead>
<tr>
<th>Casing</th>
<th>Casing 1</th>
<th>Casing 2</th>
<th>Casing 3</th>
<th>Casing 4</th>
<th>Casing 5</th>
<th>Casing 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.05 m 120-inch</td>
<td>20-40</td>
<td>50-90</td>
<td>90-130</td>
<td>140-160</td>
<td>175-450</td>
<td>400-1700 Stuck</td>
</tr>
<tr>
<td>3.65 m 144-inch</td>
<td>30-55</td>
<td>60-90</td>
<td>100-125</td>
<td>125-160</td>
<td>220-350</td>
<td>350-560 Stopped</td>
</tr>
</tbody>
</table>

Mode of Deformation/Failure

Pipe Ramming Design Guidance?

- Analysis and Design of Pipe Ramming Installations
- ASCE MOP 115
- NASTT No-Dig Publications
- TTC/USACE Guidelines for Pipe Ramming

Pipe Ramming Components

From Stein (2001)

Geotechnical/Structural Engineering

- Structural Mechanics / Materials
 - Casing Diameter (min ID Typically Set by Product Pipe)
 - Casing steel properties, connections, thickness...
 - Cutting shoe properties, length, geometry, thickness...
 - Energy transfer: Hammer/Casing/Shoe/Soil
- Soil Mechanics
 - Density variations: line & grade, face stress distribution
 - Groundwater: pressure head, soil behavior
 - Friction: internal and external skin friction
 - Obstacles: wood, cobbles, boulders, manmade objects

Cause of Failure

- Inadequate Stiffness of Leading Segment for Site Soils
 - Dense to Very Dense Soils on Bottom
 - Loose to Medium Dense Soils on Top
 - Eccentric Loads on Cutting Shoe
- Contributing Factors
 - Cutting Shoe
 - Design (Shape)
 - Thickness
 - Pipe Wall Thickness
Pipe Leading Edge

- 3.2 cm (8”) Diameter
- Single Cast Piece

Fabricated Cutting Shoe Dimensions for WSDOT Project

Contractor used a 41 mm (1 1/8”) thick cutting shoe for both the 3.65 and 3.06 m (10' and 12') diameter casings.

Improper Cutting Shoe Application

- Leading Edge of Casing
- Welded Steel Plates

Application of Inner Cutting Band

- 1.8m (72”) Diameter Pipe Ram
- 360° Banding
- 25mm (1”) Thick Band
According to API, pile geometry slenderness as indicated by D/t ratio may be as high as 60, without reducing the inelastic buckling (yield) strength. In practice, for pipes less than 600mm most designers would not be happy to employ a D/t greater than 40, as it is common to see the use of D/t ratios as low as 24.

Steel Pipe Diameter vs. Recommended Wall Thickness for Pipe Ramming (Per TT Technologies)

Cutting Shoe Thickness Vs. Pipe Diam.

Cutting Shoe Diameter Vs. D/t Ratio

Cutting Shoe Bevel

- Maximum design values of D/t ratios for 120" and 144" casings are within the 40 to 60 envelope.
- D/t Ratios of Failed Cutting Shoes
- According to API, pile geometry slenderness as indicated by D/t ratio may be as high as 60, without reducing the inelastic buckling (yield) strength. In practice, for pipes less than 600mm most designers would not be happy to employ a D/t greater than 40, as it is common to see the use of D/t ratios as low as 24.
Celebrating 20 years of Trenchless Excellence

Cutting Shoe Bevel

INCORRECT Cutting Shoe Bevel Direction

![Diagram showing incorrect bevel direction](image)

- Induced Moment (M) force is greater than the weight of soil plug (W), causing the casing pipe to fail inward.

Improper Cutting Shoe Application

- **Leading Edge of Casing**
- **Welded Steel Plates**

The “fix” reveals the problem.

- How did the contractor “fix” the problem?
- Stiffen the Casing
- Added 31.75mm (1.25”) reinforcing casing:
 - D/t: 48 for Crossing 1 and 40 for Crossing 2.
- Continue to Drive the Casing

With the casing reinforced and stiffened. The pipe ramming could continue.

Clearly the original casing was under-designed. Not providing Adequate Stiffness

Thank You to
UKSTT
Westrade

Any Questions?

Kimberlie Staheli
Kim@StaheliTrenchless.com